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DETERMINATION OF THE EFFECTIVE ELASTIC MODULI OF INHOMOGENEOUS MATERIALS 

V. V. Novikov UDC 539.3 

I. FORMULATION OF THE PROBLEM 

Quasihomogeneous media that possess effective properties dependent on the properties, 
volume concentration, and contact conditions of the components are usually investigated when 
examining the effective properties of inhomogeneous materials. The necessary and sufficient 
condition for going over to the quasihomogeneous medium is compliance of the dimension of 
the inhomogeneity ~ with the inequality 

1,, << 1 << L, (1.1) 
where ~0 is the crystal lattice constant and L is the specimen dimension. 

The effective elastic moduli Cijk~ and the pliability Sijk7 are determined from the equa- 
t ions 

<e/j> = C~jt, t @kz>, <eij> =: ~'iy/~ (~J,t>" ( I. 2) 

The angular brackets <...> here denote taking the average over the volume of the material 

1 ,i") 1 ~ ~ 
<~ ~:= ~ j ~ SoiJ(rd'~ld'r2d'rF <~0> ..... T"J.!Ssljt")d"]dr2dr'~" (1.3) 

V V 

The equations 

oi;(,-) .... (:i.ihl(,')~:Ijr). ~ij(r)  . .~'ij~r (1.4) 

are valid for the local domains (components) when conditions (1.1) are satisfied, where oij(r) 
is the local stress tensor, Eij(r) is the local strain tensor, and r = xli + x2j + x3k is a 
radius-vector. 
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In the general case, determination of the effective elastic moduli Cijkl reduces to 
solving the equations [ I ] 

Cij,':l ijmlt I" l 'P,t~l~/ "-[- (" iIIi1~ t ~ ' l / l ? , l l / i  ~ 

(1 .5)  
l ' 1" m n h l - T  z ? ::- ! , ;  

where  6k;  i s  the  K r o n e c k e r  d e l t a ,  and 7. a r e  unknown t e n s o r s  d e t e r m i n e d  f rom the  e q u a t i o n s  

<4Y> .... I,', I,.,, < 4 ' >  -, <.:.,.,>. 

where v i i s  t h e  b u l k  c o n c e n t r a t i o n  of  t h e  i - t h  componen t ,  i = 1, 2. 

The s u p e r s c r i p t s  a t  t he  t e n s o r s  and the  s u b s c r i p t s  a t  t he  s c a l a r s  i n d i c a t e  to  which  com- 
p o n e n t  t he  g i v e n  q u a n t i t y  r e f e r s .  

A d d i t i o n a l  i n f o r m a t i o n  i s  needed  to  d e t e r m i n e  C i j k l  f rom ( 1 . 5 ) ,  s i n c e  t h r e e  unknowns 
A (~) Ak(~) n) a r e  in  t he  s y s t e m  (1 .5 )  and t h e r e  a r e  two e q u a t i o n s .  (Cijk~ ' kgmn' 

Information about the structure of the composite [2] can be that needed to close the 
system (I.5). 

In the general case, the problem of closing (I .5) for a chaotic distribution of compo- 
nents in an inhomogeneous medium is analogous to the many particle problem in the theory of 
fluids [3]. The mathematical difficulties that occur in closing (I .5) would result in the 
appearance of several approximate methods of determining the effective elastic moduli of the 
composites: a variational method [4], a statistical theory of elasticity and a method of ran- 
dom functions [5-8], and a self-consistent field method [9, 10]. These methods are surveyed, 
for example, in [8, 11-13]. 

Formulas are determined below for bilateral estimates of the elastic moduli which permit 
taking account of the specific structure of an inhomogeneous material. The method of step- 
by-step quasihomogenization is used in determining the effective elastic characteristics to- 
gether with the geometric simulation of the structure of the inhomogeneous material [14]. The 
crux of this method is the following: A representative volume V of the inhomogeneous material 
is first isolated, and the volume V is then divided into domains and the effective properties 
of these partition domains are determined; by considering the partition domains quasihomo- 
geneous with known effective properties, ~e determine the effective properties of the whole 
representative element. 

2. ELASTIC MODULI 

Let the operation of taking the average of an arbitrary function f(r) with respect to 
the coordinates Xl, x2, x3 be 

The mean with respect to the section x k = const of the volume V whose area equals S(x k) 

I 

(D) 

where  D i s  t he  p r o j e c t i o n  of  S(x k) on t h e  c o o r d i n a t e  p l a n e  O x i x j ;  

The mean of  t he  l i n e  L ( x i ,  x j )  p a s s i n g  t h r o u g h  a p o i n t  w i t h  c o o r d i n a t e s  ( x i ,  x j )  p a r a l l e l  
t o  t he  Ox k a x i s ,  w i t h  r e s p e c t  t o  t he  l e n g t h  

L 

{ / ( r ) } L ( x i .  ,xi), - -  L (a : i . ,  a ' j )  / ( r )  d,r  k .  
0 

The strain potential energy of the body per unit volume V is 

U ~ (I/2Y)< ~ij(|')oLj(r)>. 

For a quasihomogeneous medium U can be written in the form U = (I/2)<sij><oij>. Here 
the relationships (1.2) are valid for <oij> and <sij>. 

It follows from the condition of minimum potential energy that for any trial functions 
o~j(r) and g~j(r) satisfying the same boundary conditions as oij(r) and ~ij(r), the following 
will be satisfied 
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l 

;' ~- l : '  21," \ '  U 
v . :  ~:, . . . . .  ' (~)> <<j (~)>. ( 2 . 1 )  

Let us examine two methods of selecting the trial functions o~j (r) and s'~j (r), which 
permit determination of the upper and lower bounds of the effective elastic moduli Cijk~ on 
the basis of the inequalities (2.1). 

! 

First Method. We select the trial function oij(r) in such a way that 

0 , 
0x k {~ (r)}s = 0, ( 2 . 2 )  

is satisfied, i.e., the stress tensor o~j(r) averaged over the section is independent of the 
coordinates x k. Here S is the area of the projection of the representative volume V on the 
plane Oxix j . 

If it is taken into account that in the general case 
! 

{0 U (r)} s -- {6'~jhZ (r) e~l (r)}8, 

is satisfied, then we can write 

where Hijkl(Xk) is the tensor of the elastic modulus of a layer of thickness dx k perpendicular 
to the Ox k axis 

C(2> T • ~ :.~(1) C(2) ~ ~(1) Hijhl (Xh) ijtd*mnhl " 1 ('D0 ~,uijhZ - -  Jjhz! "'m,~h: (xh) '  (2  . 4 )  

where Sl(x k) is the area of a section through the representative volume V by the plane x k = 
const occupied by the first component; -Sl(x k) = Sl(xk)/S(xk) ; S(xk) = S1(xk) + Sz(Xk) ; Imnkl = 

(I/2)(6mk6n~ + 6m~nk). 

The tensor A~)k~(X k) is determined from the relationship 

Multiplying (2.3) by the reciprocal tensor [HijkZ(Xk)] -z and then taking the average 
with respect to the variable x k with (2.2) taken into account, we obtain 

<~h,> = {tH~j,~z (~,0l-q L <o[j>, ( 2 . 5 )  

where L is the length of the projection of the representative volume V along the Ox k axis. 

According to the inequality (2. I), we determine the upper bound for Cijk~ 

['~[11~j~(:% ~l-l}  L 1-~ ~ ("~jkv ( 2 . 6 )  

Second Method. We now select the trial function ~'(r) in such a manner as to satisfy 

0 , 

O,~: l {~0(, ')] L =0, (2.7) 

i.e., the deformation of a prism of length L with base area dxidx j is constant (is independent 
of the coordinates xi, xj). 

Taking into account that 

p 

we write on the basis of the linearity of the problem 

[e.'ii ( r ) !L : Mij , :  (~:i. '".~){%, (")},.' (2.8) 

M i j k ~ ( X i ,  x j )  i s  t h e  p l i a b i l i t y  t e n s o r  o f  a p r i s m  o f  l e n g t h  L w i t h  b a s e  a r e a  d x i d x  j e q u a l  t o  

S'~).I  , :1  L~ {S  ' l ' )  "(~) ~I1 ( ~  ~ Mi;/,: ("i '  r j) =. }, ,  ,~,,, , . .  ("i '  ")) ~.' i#.' -- " , :: ",,,,,:a ~ i' ~J '  ( 2 . 9 )  

where Lz(xi, xj) is the length of a line passing parallel to the Ox k through the representa- 
tive volume V along the first components Ll(xi, xj) = Ll(xi, xj)/L(xi, xj); L(x, xj) = Ll(xi, 
xj) + L2(xi, xj). 
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The tensor Sm<n~l(xi,___ xj) is determined from the equality 

{dl) n(1) 

Formulas  (2 .3)  and (2 .8)  a r e  w r i t t e n  under  the  a s sumpt ion  of  l i n e a r i t y  of  the  e l a s t i c i t y  
e q u a t i o n s .  

M u l t i p l y i n g  (2 .8)  by the  r e c i p r o c a l  t e n s o r  [ M i j k l ( X i ,  x j ) ]  -z  and then  i n t e g r a t i n g  w i t h  
r e s p e c t  to  the  v a r i a b l e s  x i ,  xj  w i t h  (2 .7)  t aken  i n t o  a c c o u n t ,  we o b t a i n  

<%;> = {IMu,,, (';, O)l-*}s <d0>. ( 2 . 1 0 )  

On the  b a s i s  of the  i n e q u a l i t y  (2 .1)  w i t h  (2 .10)  t aken  i n t o  a c c o u n t ,  we d e t e r m i n e  the  
lower bound for Cklij in the form 

c'~;~, z >1. {ii~j~t (,~, xj)l-~}s. (2 .11)  

Combining the inequalities (2.6) and (2.11), we have 

{[MqT, i(.r/, yj)]-I , s ~  Cijla "~ [<[tlijt,,(xh)] , L ]-L (2. 12) 

I f  the  components  of  the  inhomogeneous m a t e r i a l  a r e  i s o t r o p i e  and homogeneous,  t hen  the  
e l a s t i c  modulus t e n s o r  C i j k l  and the  p l i a b i l i t y  t e n s o r  S i j k l  can be r e p r e s e n t e d  as  the  sum 
of  the  volume and d e v i a t o r  components  

Cijhl  "= 3KVuk z + 2~tDijhl, 

Sijkl : ~  (l/3K)Vijhl W (LI2~t)Dijhh 

where Vijkl and Dijkl are the volume and deviator parts of a unit tensor of the fourth rank 

i i ( 

(K is the bulk, and ~ the shear elastic modulus). 

Since the potential energy of an elastic body can be represented in the form of the sum 
of the multilateral compression potential energy and the pure shear potential energy, then 
the inequalities (2.12) will be valid separately for the volume and deviator parts of the 
elastic moduli tensors 

{KtQ, x/)} s <~ K ~< [{[K(x~)] -~} LI-*; ( 2 . 1 3 )  
{~t(.ri, xl)} S ~ ~1r ~ ['[ [ ~ (a:h) l -  ~ ] Z~ ] -1 ' (2 .14)  

where K ( x i ,  x j ) ,  ~ ( x i ,  x j )  a re  the  b u l k  and shea r  mo d u l i ,  r e s p e c t i v e l y ,  d e t e r m i n e d  f rom 
(2.9), and K(x k) and ~(x k) are the bulk and shear moduli determined from (2.4). 

Taking account of the assumptions made (2.2) and (2.7), the expressions for K(xi, xj), 
K(x k) and ~(xi, xj), ~(x k) can be obtained from (2.9) and (2.4) in the form 

K(,q, x.;)= kl~--JL--~2 {Kp} 5 ) , p ( x i . . r i ) : [ , j L  (2 .15)  

K(xh) = {KP] S / (P} S '  [ l ( X h )  ~ -  {1*}8' (2. 16) 

where 

P~= 6m/(3@ 4mt);d i -  (3--2mi)/(3~- 4mi);11i= 9 ( 3 ~  4m~'); m i = ai/Ki; 

[/} L = "La(:ri ' 'TJ )fl -!- ~2('Ti' zJ )f2~ (/) S := ~(:rh)fl + S-2(:1'1"; );2; 

Si(x k) is the area of the section of the volume V perpendicular to the Ox k axis and occupied 
by the i-th component (i = I, 2); S(x k) = Sl(x k) + S2(xk) ; Si(Xk) = Si(xk)/S(xk) ; Li(xi, xj) 
is the length of the segment passing parallel to the OK k axis in the i-th component, and 
L(xi, xj) = Ll(x i, xj) + ee(xi, xj); Li(xi, xj) = Li(xi, xj)/L(xi, xj). 

If Sl(x k) = vl, S2(xk) = v2, Ll(x i, xj) = vl, ~2(xi, xj) = v2, then taking account of 
(2.15) we obtain from (2.13) 

' / /  n \ <d> <p>~-I <KP> 
, . ( \ - ~  ~- -2  ~ K <  ( 2 . | 7 )  / < - -k~  ) <PS ; 

<11~>-1 ~< ~ ~ <~>. (2 .18)  
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When the Poisson ratios of the mixture components are equal, then (2.17) takes the form 

<I/K> -~ ~ K ~ <K>. (2.19) 

In this case (2.18) and (2.19) agree with the Voigt and Royce bracket for K and ~ [8]. 

It must be noted that the difference between the bracket obtained for the elastic moduli 
(2.12) and an analogous estimate of the Hashin--Shtrikman [4] elastic moduli boundaries is that 
the formulas in the inequality (2.12) permit taking into account the microstructure of the in- 
homogeneous material in greater detail, and therefore, closing the bracket for K and ~. In 
our case, the microinhomogeneities can here have arbitrary form, possess anisotropic proper- 
ties, and are randomly arranged in the volume, which also enlarges the possibility of the 
application of the inequality (2.12) as compared with the bilateral estimates obtained under 
the assumption of strict periodicity in the location of inclusions of normal form and isot- 
ropy of the components [15]. As an illustration of utilization of the formulas obtained, 
we consider a structure with isolated inclusions. 

3. SPHERE IN A CUBE 

Let us determine the upper and lower bounds for the moduli K and D by using (2.13) and 
(2.14) for a macroscopically homogeneous and isotropic material consisting of a homogeneous 
and isotropic matrix and inclusions of spherical shape of the other component. 

We shall consider that each inclusion is surrounded by a surface S n lying entirely in 
the matrix and a bounding volume V n such that VI/V n = vl, where VI is the volume of the in- 
clusion (Fig. la). It is assumed that the volume V n has the shape of cubes of all sizes (from 
finite to infinitesimal) so that they can fill the whole volume of the material (Fig. Ib). 

Lower Bound. We divide the elementary cell of the sphere in the cube into two domains: 
we isolate a cylinder whose generators are parallel to the �9 axis while the radius equals 
the radius of the sphere R (Fig. Ic). In this case 

Iq~(.ri,.~ 9 , , ~ , ~ " I  p ~ , L ~ ( . , . . , . , : r  ~ ( : i , ~ ; ) ,  ( 3 . 1 )  

where 

- -  , - r '  r ~ ,  . r  i . r  I t .  ~j "'(:]l.l/,~a)~ :~ t, ~ .,.~ , - .  

Substituting (3.1) into (2.15) and then using the expression for the lower bound in in- 
equalities (2.13) and (2.14), we determine the properties of the cylinder first (the bulk 
and the shear Yi moduli), and then the effective properties of the elementary cell 

~', I ' ,  ~J, ~:'~ (3.2) 
•  2 --~'- h l  ' ~ - - -  L-- "~ :~, , 4 ,~  ~ .,~,~, I ~'~ -- -~'~ ' ~ [ i ~ ,  (c. b = rc~ (i - c b ] ;  
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where 

'% {~_ .i hi--~) +@ ?' :- (t 2~-) 0~ (t --ll) [it ~1 

A I = K I P  1 - K a P . 2  A g . = K ~ P  2 A:]== P1 + P e - A '  t--- ,ttl' 

C1 A1/A 8, C. z =- (A./I a -- A4A1)/(2A~)" C 8 ..... (z 7,,-'tl --A2A:},A 4 -- 

A t 
- -  2AaAsA1)/(4Aaa), C 4 = (A, z - -  4P1P~) / (4Aa~I) ,  C 5 --  2Aaa t �9 

( 3 . 3 )  

(3.4) 

Here 

' I ~ - - I / ~  

I ~ 1 ~  ~+V~'  b>0, 

1 b = 0 ,  

& (~) = [ T V @ ,  I | . z 
aretg ]/i-7~j[, b<O. 

( 3 . 5 )  

We finally obtain the lower bound for the moduli K' and ~' in the form 

K2P 2 + (• - -  K~P2) g~ K' = ( 3 . 6 )  
P2 q-(P' --  P2) ~' ' 

~" = t&'+. ( ~ ' - -  ~ )  a,2 , m" - 1r --v'' ~2 = ~1/:, \[3v*~'/a4 J �9 ( 3 . 7 )  

.Upper Bound. In this case we divide the elementary cell into two domains as follows: 
We draw tangent planes to the sphere perpendicular to the 0x3 axis (Fig. Id). For the do- 
main between the tangential planes, we introduce the notation: • is the bulk modulus, and 
y" the shear modulus. Here 

S~ r -- ~ 0 -- ;:I), S~ (:%)2= 1 -- ~ ( ,% ,T~ - x 9 .  ( 3 . 8 )  

Substituting (3.8) into (2.16), and then using the expressions for the upper boundaries 
of inequalities (2.13) and (2.14), we have 

Considering the 
effective properties 
cell 

x ~ [ B i B 1 B 4 - - B i B 3  1-1 (3.9) 
Bt �9 B~ [B5 (t) ; 

?" == F2 (1 - - t ) [ f B s  (1)][1; ( 3 . 1 0 )  

BI = P~+  Bi, B~ = (Pl -- P~)ni, B, = & +  t/(l -- t); (3 .1  1) 

Ba = KiPe  + B 4, Be = ~2(K1P1 - -  K~Pi) , B 5 ~ Ba/B ~. (3 .  12) 

domain  b e t w e e n  t h e  t a n g e n t  p l a n e s  t o  t h e  s p h e r e  as  q u a s i h o m o g e n e o u s  w i t h  
• and y " ,  we d e t e r m i n e  t h e  e f f e c t i v e  m o d u l i  K" and ~" o f  t h e  e l e m e n t a r y  

�9 ( -L p"--- }--1 
K', = / ~  + ~ "  -- ~ 1  ~ - 2 ~%~,,~_ (~,,p,, _ K A  ) ~ 

,~,, k - - g - -  7 �9 
n" = 9f(3 + 4m"), d" : (3 -- 4m")I(3 @ 4m') ,  P" = 6m'/(3 @ 4m'), 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

~n 
In this 

4. CUBE IN A CUBE 

the problem considered above we replace the sphere by 
case the elementary cell will have the form displayed 

a cube of the same volume. 
in Fig. le. For this cell all 
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the calculations are simplified substantially. 

Lower Bound. 

where 

The moduli K' and p' can be determined in the form 

K2P 2 + ( •  - -  K 2 P 2 )  c~ 2 
K'  = . , c z =  z,]13; 

P2 @- ( P' - -  "r)2) ,'z~ 

~ '  = P2 @" ('~' - -  ,I-i2) ~2' 

~ 

(4.1) 

(4.2) 

[d~ + (d~ -- <,) ~l lP~ + (P~ --/ '~) ~1/-~" 

I ;  
/ r I--~ k--I 

) . 

(4.3) 

Upper Bound. 
upper bound can be determined for the volume K" and shear ~" moduli in the form 

= { n  2 n" n2 [d2@(d"-'=dz)~ @ (P" -- P2) cq } -1 

1 t - - a  r \ - i  
; 

K2P. 2 q- (K1P  l - -  K2P~)  o~ 2 

P2 + (P t  - -  P2) = 

"7" = !-12 -I- (txl - -  p2)o~ ~. 

(4.4) 

Partitioning the elementary cell into domains as indicated in Fig. If, the 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

5. COMPARISON WITH EXPERIMENTAL DATA 

The present paper is similar in approach to Hill, Hashin, and Shtrikman; hence, a com- 
putation by the Hashin--Shtrikman formulas is presented for a comparison between the formulas 
obtained and the experimental data. Experimental data in Figs. 2 and 3 are compared with a 
computation using (3.2)-(3.15) and (4.1)-(4.8). The experimental points are presented for an 
epoxy resin--quartz system [16, 17]. The volume concentration of the core in the system varies 
within the range 0 4 vl < 0.5. 

Comparison shows that the bracket for the elastic moduli, computed on the basis of the 
model of spheres in a cube (curves 4 and 2) and cubes in a cube (curves 5 and 3) is narrower 
than the Hashin--Shtrikman bracket [4] (curves 6 and I). Here the lower bounds for the Young's 
and shear moduli are practically in agreement for all three computation schemes in the range 
0 ~ vl ~ 0.4. Narrowest and sufficiently well encompassing the experimental data is the 
bracket for the elastic modulus obtained on the basis of the model of cubes in a cube. Conse- 
quently, this model and (4.1)-(4.8) can be recommended for computing systems of the continuous 
matrix-isolated inclusions type. 

LITERATURE CITED 

I. R. Hill, "Elastic properties of a reinforced solid: Some theoretical principles," J. 
Mech. Phys. Solids, ]_! , No. 5 (1963). 

2. G.N. Dul'nev and V. V. Novikov, "Conductivity of inhomogeneous systems," Inzh.-Fiz. Zh., 
36, No. 5 (1979). 

3. I.Z. Fisher, Statistical Theory of Fluids [in Russian], Fizmatgiz, Moscow (1961). 
4. Z. Hashin and S. Shtrikman, "On some variational principles in anisotropic and non- 

homogeneous elasticity," J. Mech. Phys., 10, No. 4 (1962). 
5. I.M. Lifshits and L. N. Rozentsveig, "On the theory of elastic properties of polycrys- 

tals," Zh. Eksp. Teor. Fiz., 16, No. 11 (1946). 
6. L.P. Khoroshun and B. P. Maslov, Methods of Automated Computation of the Physicomechan- 

ical Constants of Composite Materials [in Russian], Naukova Dumka, Kiev (1980). 
7. S.D. Volkov and V. P. Stavrov, Statistical Mechanics of Composite Materials [in Rus- 

sian], Izd. Beloruss. Univ., Minsk (1978). 
8. T.D. Shermergor, Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, 

Moscow (1977). 
9. E.H. Kerner, "The elastic and thermoelastic properties of composite media," Proc. Phys. 

Soc., B63, No. 439B (1956). 

745 



10. S. K. Kanaun, "Self-consistent field method in the problem of effective properties of an 
elastic composite," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (]975). 

11. L. Brautman and R. Crock (eds.), Composite Materials [Russian translation], Mir, Moscow 
(1978). 

12. V. S. Ivanova, I. M. Kop'ev, P. R. Botvina, and T. D. Shermergor, Metal Reinforcement 
by Fibers [in Russian], Nauka, Moscow (1973). 

13. R. Christensen, Introduction to the Mechanics of Composites [Russian translation], Mir, 
Moscow (1982). 

14. V. V. Novikov, "Effective coefficient of thermal expansion of an inhomogeneous material," 
Inzh.-Fiz. Zh., 44, No. 6 (1983). 

15. R. H. T. Yeh, "Varlatlonal" " bounds of the elastic moduli of two-phase materials," J. Appl. 
Phys., 42, No. 3 (1971). 

16. O. Tsadi and L. J. Cohen, "Elastic properties of filled and porous epoxy composites," 
J. Mech. Sci., 9, 539 (1967). 

17. H. J. Crowson and R. G. G. Arridge, "The elastic properties in bulk and shear of a glass 
bead-reinforced epoxy resin composite," J. Materials Sci., 1-2, 1254 (1977). 

VISCOPLASTIC DEFORMATION OF ANNULAR PLATES 

S. N. Kosorukov UDC 539.374 

Viscoplasticity is one of the most reliable and convenient methods of taking account of 
the dependence of the strength properties of materials on the loading rate [I, 2]. Analytic 
solutions of problems of quasistatic loading of sufficiently complex structure elements, 
which are convenient to obtain by linearizing the fundamental nonlinear viscoplasticity 
relationships, are of significant interest for practice. 

This paper illustrates the utilization of one of the possible linearization methods. 
The solutions obtained for hinge-supported and clamped annular plates satisfy both the kine- 
matic conditions and the equilibrium equations exactly. 

I. A generalization of the simplest dependences for a stiffly viscoplastic material is 
presented in [I] and reduces to a dynamic flow criterion of the form 

where  k i s  t h e  s h e a r  y i e l d  p o i n t ,  J 2 ,  I2 a r e  t h e  second  i n v a r i a n t s  o f  t h e  s t r e s s  and s t r a i n  
r a t e  d e v i a t o r s ,  y i s  a c o e f f i c i e n t  c h a r a c t e r i z i n g  t h e  r a t i o  b e t w e e n  t h e  v i s c o u s  and p l a s t i c  
p r o p e r t i e s  of  t he  m a t e r i a l ,  ~ i s  t he  symbol  f o r  a c e r t a i n  f u n c t i o n ,  and ~ - i  i s  t h e  symbol  of  
t h e  r e c i p r o c a l  f u n c t i o n .  

The a s s o c i a t e d  f l o w  law r e m a i n s  v a l i d .  The n o n l i n e a r  Mises  c o n d i t i o n  i s  u s e d  h e r e  as  
the initial flow condition in stresses. The radius of the circular cylindrical flow surface 
in the space of the principal stresses is determined also by a nonlinear combination of the 
principal strain rates. It is easy to see that points of the ellipse (Fig. 1) in the plane 
of the principal strain rates el -- s2 correspond to points lying on an ellipse similar to 
the Mises ellipse in the plane of the principal stresses 01 -- 02 for the plane stress state 
of an incompressible material. To linearize the initial nonlinear relationship it is suf- 
ficient to replace the ellipses by certain similar polygons by conserving the similarity of 
such polygons as the sizes change. For instance, if the ellipse J2 = const is replaced by 
the hexagon I (Fig. la), similar to the Tresk hexagon, then by replacing the ellipse I2 = 
const by hexagons ] or 2 (Fig. Ib), we obtain the relationships, respectively, for the linear 
function F 

m a x ( o -  zl~)= o , r l  ~tmaxl<;I, m a x ( z a - - o r ) =  r + ( t / 2 ) p b u - s g l '  ( 1 . 2 )  

where the subscripts ~, ~ correspond to the maximal and minimal values of the quantities; 
ey is the maximal strain rate in absolute value, and p = 3k/2y is the viscosity coefficient 
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